Vectorize#
Basic#
- Operations.vectorize(fields=None, filters=None, **kwargs)#
Vectorize the model
- Parameters
fields (List[str]) – A list of fields to vectorize
encoders (Dict[str, List[Any]]) – A dictionary that creates a mapping between your unstructured fields and a list of encoders to run over those unstructured fields
- Returns
If the vectorization process is successful, this dict contains the added vector names. Else, the dict is the request result containing error information.
- Return type
dict
Example
from relevanceai import Client client = Client() dataset_id = "sample_dataset_id" ds = client.Dataset(dataset_id) ds.vectorize( fields=["text_field_1", "text_field_2"], encoders={ "text": ["mpnet", "use"] } ) # This operation with create 4 new vector fields # # text_field_1_mpnet_vector_, text_field_1_mpnet_vector_ # text_field_1_use_vector_, text_field_1_use_vector_