Question Answer#
Basic#
The easiest way to ask a question to a text field and extract the relevant answer is using the ds.question_answer function.
Prior to adding question answering, we will need to make sure to install HuggingFace’s Transformers.
pip install -q transformers[sentencepiece]
You can then run this:
from relevanceai import Client
client = Client()
ds = client.Dataset("ecommerce")
ds.question_answer(
input_field="product_title",
question="What brand shoes",
output_field="_question_",
# Easily switch to a different HuggingFace model
model_name="mrm8488/deberta-v3-base-finetuned-squadv2",
)
For every document, you will get functions and formulas similar to the ones below:
{
"_question_": {
"what-brand-shoes": {
"answer": "nike", # returns a string response
"score": 0.98, # confidence of the answer
}
}
}
API Reference#
Add Sentiment to your dataset
- class relevanceai.operations.text.sentiment.sentiments.SentimentOps#
- get_shap_values(text, sentiment_ind=2, max_number_of_shap_documents=None, min_abs_score=0.1)#
Get SHAP values
- class relevanceai.operations.text.sentiment.sentiment_workflow.SentimentWorkflow#
Sentiment workflow
- fit_dataset(dataset, input_field, output_field='_sentiment_', log_to_file=True, chunksize=20, workflow_alias='sentiment', notes=None, refresh=False, highlight=False, positive_sentiment_name='positive', max_number_of_shap_documents=None, min_abs_score=0.1)#
Fit on dataset