Client#
- Client.list_datasets(verbose=False)#
List Datasets
Example
from relevanceai import Client client = Client() client.list_datasets()
- Client.delete_dataset(dataset_id)#
Delete a dataset
- Parameters
dataset_id (str) – The ID of a dataset
Example
from relevanceai import Client client = Client() client.delete_dataset("sample_dataset_id")
- Client.receive_dataset(dataset_id, sender_project, sender_api_key)#
Recieve an individual a dataset.
Example
>>> client = Client() >>> client.admin.receive_dataset( dataset_id="research", sender_project="...", sender_api_key="..." )
- Parameters
dataset_id (str) – The name of the dataset
sender_project (str) – The project name that will send the dataset
sender_api_key (str) – The project API key that will send the dataset
- Client.send_dataset(dataset_id, receiver_project, receiver_api_key)#
Send an individual a dataset. For this, you must know their API key.
- Parameters
dataset_id (str) – The name of the dataset
receiver_project (str) – The project name that will receive the dataset
receiver_api_key (str) – The project API key that will receive the dataset
Example
client = Client() client.send_dataset( dataset_id="research", receiver_project="...", receiver_api_key="..." )
- Client.clone_dataset(source_dataset_id, new_dataset_id=None, source_project=None, source_api_key=None, project=None, api_key=None)#
Clone a dataset from another user’s projects into your project.
- Parameters
dataset_id – The dataset to copy
source_dataset_id (
str
) – The original datasetsource_project (
Optional
[str
]) – The original project to copy fromsource_api_key (
Optional
[str
]) – The original API key of the projectproject (
Optional
[str
]) – The original projectapi_key (
Optional
[str
]) – The original API key
Example
client = Client() client.clone_dataset( dataset_id="research", source_project="...", source_api_key="..." )
- Client.create_dataset(dataset_id, schema=None)#
A dataset can store documents to be searched, retrieved, filtered and aggregated (similar to Collections in MongoDB, Tables in SQL, Indexes in ElasticSearch). A powerful and core feature of RelevanceAI is that you can store both your metadata and vectors in the same document. When specifying the schema of a dataset and inserting your own vector use the suffix (ends with) “_vector_” for the field name, and specify the length of the vector in dataset_schema.
For example:
These are the field types supported in our datasets: [“text”, “numeric”, “date”, “dict”, “chunks”, “vector”, “chunkvector”].
For example:
{ "product_text_description" : "text", "price" : "numeric", "created_date" : "date", "product_texts_chunk_": "chunks", "product_text_chunkvector_" : 1024 }
You don’t have to specify the schema of every single field when creating a dataset, as RelevanceAI will automatically detect the appropriate data type for each field (vectors will be automatically identified by its “_vector_” suffix). Infact you also don’t always have to use this endpoint to create a dataset as /datasets/bulk_insert will infer and create the dataset and schema as you insert new documents.
Note
A dataset name/id can only contain undercase letters, dash, underscore and numbers.
“_id” is reserved as the key and id of a document.
Once a schema is set for a dataset it cannot be altered. If it has to be altered, utlise the copy dataset endpoint.
- Parameters
dataset_id (str) – The unique name of your dataset
schema (dict) – Schema for specifying the field that are vectors and its length
Example
from relevanceai import Client client = Client() client.create_dataset("sample_dataset_id")
- Client.search_datasets(query)#
Note
This function was introduced in 1.1.3.