relevanceai.operations_new.sentiment.transform
#
Add Sentiment to your dataset
Module Contents#
- class relevanceai.operations_new.sentiment.transform.SentimentTransform(text_fields: list, model_name: str = 'cardiffnlp/twitter-roberta-base-sentiment', highlight: bool = False, positive_sentiment_name: str = 'positive', max_number_of_shap_documents: Optional[int] = None, min_abs_score: float = 0.1, output_fields: list = None, sensitivity: float = 0, device: int = None, strategy: str = 'value_max', eps: float = 1e-09, **kwargs)#
To write your own operation, you need to add: - name - transform
- preprocess(self, text: str)#
- property classifier(self)#
- property label_mapping(self)#
- analyze_sentiment(self, texts: List[str], max_number_of_shap_documents: Optional[int] = None, min_abs_score: float = 0.1)#
- property explainer(self)#
- get_shap_values(self, text: str, sentiment_ind: int = 2, max_number_of_shap_documents: Optional[int] = None, min_abs_score: float = 0.1)#
Get SHAP values
- property name(self)#
abstractproperty for name
- transform(self, documents)#
abstractmethod for transform