relevanceai.operations_new.label.transform
#
Labelling performs a vector search on the labels and fetches the closest max_number_of_labels.
Module Contents#
- class relevanceai.operations_new.label.transform.LabelTransform(vector_field: str, label_documents: list, expanded: bool = True, max_number_of_labels: int = 1, similarity_metric: str = 'cosine', similarity_threshold: float = 0.1, label_field='label', label_vector_field='label_vector_', output_field: str = '_label_', **kwargs)#
To write your own operation, you need to add: - name - transform
- transform(self, documents) List[Dict[str, Any]] #
Get all vectors, search across
- Parameters
documents – the documents to be labeled
label_documents – The documents that contain the labels.
Example
ds = client.Dataset(...) # label an entire dataset ds.label( vector_field="sample_1_vector_", label_documents=[ { "label": "value", "price": 0.3, "label_vector_": [1, 1, 1] }, { "label": "value-2", "label_vector_": [2, 1, 1] }, ], expanded=True # stored as dict or list )
If missing “label”, returns Error - labels missing label field writes loop to set label field
If you want all values in a label document plus similarity, you need to set expanded=True
- Return type
A list of dictionaries.
- get_label_document(self, document, *args, **kwargs)#
- property name(self)#
abstractproperty for name
- cosine_similarity(self, query_vector, vector_field, documents, reverse=True, score_field: str = '_label_score', max_number_of_labels: int = 1, similarity_threshold: float = 0)#
It takes a query vector, a vector field, a list of documents, and a few other parameters, and returns a list of documents sorted by their cosine similarity to the query vector
- Parameters
query_vector – the vector you want to compare against
vector_field – the field in the documents that contains the vector
documents – list of documents
reverse – True/False
optional – True/False
score_field (str, optional) – str = “_label_score”
max_number_of_labels (int, optional) – int = 1,
similarity_threshold (float, optional) – float = 0,
- Return type
A list of dictionaries.
- get_operation_metadata(self) Dict[str, Any] #
abstractmethod for return metadata for upsertion