relevanceai.operations_new.cooccurrence_network.transform
#
Build a co-occurrence network based on the documents in your dataset
Module Contents#
- relevanceai.operations_new.cooccurrence_network.transform.preprocess(data, stopwords_list=[])#
- class relevanceai.operations_new.cooccurrence_network.transform.WordDictionary(docs)#
- get_df_table(self)#
- get_ids(self, doc_id)#
- get_docs(self, word: str)#
- get_word(self, id)#
- get_id(self, word: str)#
- update_df_table(self, word: str)#
- class relevanceai.operations_new.cooccurrence_network.transform.CoOccurNetTransform(max_number_of_clusters=15, min_number_of_clusters=3, number_of_concepts=100, **kwargs)#
To write your own operation, you need to add: - name - transform
- find_max_vertex(self, visited, weights)#
- maximum_spanning_tree(self, graph)#
- concurrence_matrix(self, top_ids, texts, word_dict)#
- get_clusters_labels(self, mat)#
- transform(self, documents, text_field='content', stopwords_list=[], center_word=None)#
abstractmethod for transform
- property name(self)#
abstractproperty for name