relevanceai.operations_new.cluster.models.faiss.base#

Faiss Base

Module Contents#

class relevanceai.operations_new.cluster.models.faiss.base.FaissModel(model: Any, model_kwargs: Optional[Dict] = None)#

Faiss model base

model :faiss.Kmeans#
static check_vectors(input: Any) numpy.ndarray#

It takes a list of vectors, converts them to a numpy array, and then converts them to a float32

Parameters

input (Any) – Any

Return type

the input as a numpy array.

fit_predict(self, vectors: Any) List[int]#

> The function takes in a list of vectors and returns a list of labels

Parameters

vectors (Any) – Any - the vectors to be clustered

Return type

The labels of the vectors.

fit(self, vectors: Any) numpy.float64#

It trains the model.

Parameters

vectors (Any) – Any

Return type

The model is being trained on the vectors.

predict(self, vectors) List[int]#

This function takes in a list of vectors and returns a list of labels

Parameters

vectors – The vectors to be predicted.

Return type

The labels of the vectors.

property cluster_centers_(self)#

It returns the centroids of the clusters

Return type

The cluster centers

property alias(self)#

The function takes a string and returns a string

Return type

The alias of the model.