relevanceai.operations.viz.cluster
#
Visualisations for your clustering.
Module Contents#
- class relevanceai.operations.viz.cluster.ClusterVizOps(credentials, dataset_id: str, vector_fields: List[str], alias: Optional[str] = None, **kwargs)#
Cluster Visualisations. May contain additional visualisation dependencies.
- plot_basic_distributions(self, numeric_field: str, top_indices: int = 10, dataset_id: Optional[str] = None)#
Plot the sentence length distributions across each cluster
Example
from relevanceai import Client client = Client() cluster_ops = client.ClusterVizOps( dataset_id="sample_dataset", vector_fields=["sample_vector_"], alias="kmeans-5" ) cluster_ops.plot_basic_distributions()
- Parameters
numeric_field (str) – The numeric field to plot
top_indices (int) – The top indices in the plotting
dataset_id (Optional[str]) – The dataset ID
- plot_distributions(self, numeric_field: str, measure_function: Callable = None, top_indices: int = 10, dataset_id: str = None, asc: bool = True, measurement_name: str = 'measurement')#
Plot the distributions across each cluster measure_function is run on each cluster and plots
Example
from scipy.stats import skew ops.plot_distributions_measure(numeric_field, skew, dataset_id=dataset_id)
- Parameters
numeric_field (str) – The numeric field to plot the distribution by
measure_function (callable) – What to measure the function
top_indices (int) – The top indices
dataset_id (str) – The dataset ID to use
asc (bool) – If True, the distributions are plotted
measurement_name (str) – The name of what should be plotted for the graphs
- plot_most_skewed(self, numeric_field: str, top_indices: int = 10, dataset_id: str = None, asc: bool = True)#
Plot the most skewed numeric fields
- centroid_heatmap(self, metric: str = 'cosine', vmin: float = 0, vmax: float = 1, print_n: int = 8, round_print_float: int = 2)#
Heatmap visualisation of the closest clusters. Prints the ones ranked from top to bottom in terms of largest cosine similarity.
- show_closest(self, cluster_ids: Optional[List] = None, text_fields: Optional[List] = None, image_fields: Optional[List] = None)#
Show the clusters with the closest.