relevanceai.operations.cluster.sub
#
Module Contents#
- class relevanceai.operations.cluster.sub.SubClusterOps(credentials, alias: str, dataset, model, vector_fields: List[str], parent_field: str, outlier_value=- 1, outlier_label='outlier', verbose: bool = True, **kwargs)#
This class is an intermediate layer between cluster ops and subclusterops. It it used to over-write parts of clusterops.
- fit_predict(self, dataset, vector_fields: List[Any], parent_field: str = None, filters: Optional[List] = None, verbose: bool = False, min_parent_cluster_size: Optional[int] = None, cluster_ids: Optional[list] = None)#
Run subclustering on your dataset using an in-memory clustering algorithm.
- Parameters
dataset (Dataset) – The dataset to create
vector_fields (List) – The list of vector fields to run fitting, prediction and updating on
filters (Optional[List]) – The list of filters to run clustering on
verbose (bool) – If True, this should be verbose
Example
from relevanceai import Client client = Client() from relevanceai.package_utils.datasets import mock_documents ds = client.Dataset("sample") # Creates 100 sample documents documents = mock_documents(100) ds.upsert_documents(documents) from sklearn.cluster import KMeans model = KMeans(n_clusters=10) clusterer = ClusterOps(alias="minibatchkmeans-10", model=model) clusterer.subcluster_predict_update( dataset=ds, )
- store_subcluster_metadata(self, parent_field: str, cluster_field: str)#
Store subcluster metadata
- subpartialfit_predict_update(self, dataset, vector_fields: list, filters: Optional[list] = None, cluster_ids: Optional[list] = None, verbose: bool = True)#
Run partial fit subclustering on your dataset.
- Parameters
dataset (Dataset) – The dataset to call fit predict update on
vector_fields (list) – The list of vector fields
filters (list) – The list of filters
Example
from relevanceai import Client client = Client() from relevanceai.package_utils.datasets import mock_documents ds = client.Dataset("sample") # Creates 100 sample documents documents = mock_documents(100) ds.upsert_documents(documents) from sklearn.cluster import MiniBatchKMeans model = MiniBatchKMeans(n_clusters=10) clusterer = ClusterOps(alias="minibatchkmeans-10", model=model) clusterer.subpartialfit_predict_update( dataset=ds, )
- list_unique(self, field: str = None, minimum_amount: int = 3, dataset_id: str = None, num_clusters: int = 1000)#
List unique cluster IDS
Example
from relevanceai import Client client = Client() cluster_ops = client.ClusterOps( alias="kmeans_8", vector_fields=["sample_vector_] ) cluster_ops.list_unique()
- Parameters
alias (str) – The alias to use for clustering
minimum_cluster_size (int) – The minimum size of the clusters
dataset_id (str) – The dataset ID
num_clusters (int) – The number of clusters
- subcluster_predict_documents(self, vector_fields: Optional[List] = None, filters: Optional[List] = None, min_parent_cluster_size: Optional[int] = None, cluster_ids: Optional[List] = None, verbose: bool = True)#
Subclustering using fit predict update. This will loop through all of the different clusters and then run subclustering on them. For this, you need to
Example
from relevanceai import Client client = Client() ds = client.Dataset("sample") # Creating 100 sample documents from relevanceai.package_utils.datasets import mock_documents documents = mock_documents(100) ds.upsert_documents(documents) # Run simple clustering first ds.auto_cluster("kmeans-3", vector_fields=["sample_1_vector_"]) # Start KMeans from sklearn.cluster import KMeans model = KMeans(n_clusters=20) # Run subclustering. cluster_ops = client.ClusterOps( alias="subclusteringkmeans", model=model, parent_alias="kmeans-3")